Calculation of values of L-functions associated to elliptic curves
نویسندگان
چکیده
We calculated numerically the values of L-functions of four typical elliptic curves in the critical strip in the range Im(s) ≤ 400. We found that all the non-trivial zeros in this range lie on the critical line Re(s) = 1 and are simple except the one at s = 1. The method we employed in this paper is the approximate functional equation with incomplete gamma functions in the coefficients. For incomplete gamma functions, we continued them holomorphically to the right half plane Re(s) > 0, which enables us to calculate for large Im(s). Furthermore we remark that a relation exists between Sato-Tate conjecture and the generalized Riemann Hypothesis.
منابع مشابه
The derivative of SO(2N + 1) characteristic polynomials and rank 3 elliptic curves
Here we calculate the value distribution of the first derivative of characteristic polynomials of matrices from SO(2N + 1) at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. The connection between the values of random matrix characteristic polynomials and values of the L-functions of families of elliptic curves implies that this calculation in random mat...
متن کاملA descent method for explicit computations on curves
It is shown that the knowledge of a surjective morphism $Xto Y$ of complex curves can be effectively used to make explicit calculations. The method is demonstrated by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve with period lattice $(1,tau)$, the period matrix for the Jacobian of a family of genus-$2$ curves complementing the classi...
متن کاملALGEBRAIC THETA FUNCTIONS AND THE p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS
We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-function of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced (normalized or canonical in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic proper...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملAn Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves
In a (t,n)-threshold secret sharing scheme, a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together, but no group of fewer than t participants can do. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao, and the intractability of the elliptic curve discrete logar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999